Computer graphics Lesson 5

Mgr. Nikola Pajerová
Department of Technical Mathematics
Faculty of Mechanical Engineering, CTU in Prague

Surfaces

- given by set of points \rightarrow points mesh | set of definition curves
- types:

1. Approximation surface - mesh of control points, control mesh
2. Interpolation surface - mesh of definition points, definition mesh

- joining of individual surface elements (= patches) with given continuity is patching
- consider easiest free-form surfaces: ruled surface (interpolation), surface of hyperbolic paraboloid (interpolation), Coons bilinear surface (interpolation), Bézier surface (approximation)
- curvatures, tangent planes etc. \rightarrow page 24-28

Vector equation of a surface

- square area of parametrization $\langle 0 ; 1\rangle^{2}$
- input data in matrix form - map of surface
- forms of equation:

$$
\mathbf{P}(u, v)=(x(u, v), y(u, v), z(u, v)),(u, v) \in[0,1]^{2}
$$

1. matrix form (preferred)
2. linear combination of basis functions \rightarrow multiplication of matrices $\quad \mathbf{P}(u, v)=H_{0}(u) H_{0}(v) \mathbf{M}_{0,0}+H_{0}(u) H_{1}(v) \mathbf{M}_{0,1}+\ldots+H_{m}(u) H_{n}(v) \mathbf{M}_{m, n},(u, v) \in[0,1]^{2}$
3. expression by summation $\quad \mathbf{P}(u, v)=\sum_{i=0}^{m} \sum_{j=0}^{n} H_{i}(u) H_{j}(v) \mathbf{M}_{i, j}, \quad(u, v)=[0,1]^{2}$

$\mathbf{P}(u, v)=\mathbf{H}(u) \cdot \mathbf{M} \cdot \mathbf{H}(v)=$

$$
=\left(H_{0}(u), H_{1}(u), \ldots, H_{m}(u)\right) \cdot\left(\begin{array}{cccc}
\mathbf{M}_{0,0} & \mathbf{M}_{0,1} & \ldots & \mathbf{M}_{0, n} \\
\mathbf{M}_{1,0} & \mathbf{M}_{1,1} & \ldots & \mathbf{M}_{1, n} \\
\vdots & \vdots & & \vdots \\
\mathbf{M}_{m, 0} & \mathbf{M}_{m, 1} & \ldots & \mathbf{M}_{m, n}
\end{array}\right) \cdot\left(\begin{array}{c}
H_{0}(v) \\
H_{1}(v) \\
\vdots \\
H_{n}(v)
\end{array}\right)
$$

$$
(u, v) \in[0,1]^{2}
$$

Tangent vector of a surface

Definition 1.25 - Tangent vectors of parametric curves. The first partial derivative

$$
\begin{equation*}
\mathbf{P}^{u}(u, v)=\frac{\partial \mathbf{P}(u, v)}{\partial u}=\left(x^{u}(u, v), y^{u}(u, v), z^{u}(u, v)\right), \quad(u, v) \in I \tag{1.44}
\end{equation*}
$$

is a vector function. For $(\alpha, \beta) \in I$, this vector function determines a tangent vector of parametric u-curve $\mathbf{P}^{u}(u, v)$ at point $\mathbf{P}(\alpha, \beta)$

$$
\begin{equation*}
\mathbf{P}^{u}(\alpha, \beta)=\left.\frac{\partial \mathbf{P}(u, v)}{\partial u}\right|_{u=\alpha, v=\beta}=\left(x^{u}(\alpha, \beta), y^{u}(\alpha, \beta), z^{u}(\alpha, \beta)\right) . \tag{1.45}
\end{equation*}
$$

\rightarrow Textbook pg. 28

- similar for v-curve
- tangent plane is determined by tangent vectors of parametric u curve and v-curve in the given point on surface

Twist vector of a surface

Definition 1.28 - Twist vector. The second mixed partial derivative of vector function

$$
\begin{align*}
\mathbf{P}^{u v}(u, v)= & \frac{\partial^{2} \mathbf{P}(u, v)}{\partial u \partial v}=\frac{\partial^{2} \mathbf{P}(u, v)}{\partial v \partial u}= \\
= & \left(x^{u v}(u, v), y^{u v}(u, v), z^{u v}(u, v)\right)=\left(x^{v u}(u, v), y^{v u}(u, v), z^{v u}(u, v)\right), \\
& (u, v) \in I \tag{1.49}
\end{align*}
$$

is a vector function. For $(\alpha, \beta) \in I$, this vector function determines a twist vector of the surface at point $\mathbf{P}(\alpha, \beta)$.

Twist vectors correspond to elevation of the surface from its tangent plane.
\rightarrow Textbook pg. 28

Ruled surface

- interpolates 2 given opposite boundaries (curves given by vector function of one variable from linear interpolation between given boundaries - connection of one and one point on each curve by straight line segment)
- corners: $P_{0,0}=P(0,0), P_{0,1}=P(0,1), P_{1,0}=P(1,0), P_{1,1}=P(1,1)$
- boundaries: $P_{0}(u)=P(u, 0), P_{1}(u)=P(u, 1)$,

$$
P_{0}(v)=P(0, v), P_{1}(v)=P(1, v)
$$

ruled surface given by boundaries in u-direction is

$$
\mathbf{P}(u, v)=(1-v) \mathbf{P}_{0}(u)+v \mathbf{P}_{1}(u),(u, v) \in[0,1]^{2}
$$

v-direction is

$$
\mathbf{P}(u, v)=(1-u) \mathbf{P}_{0}(v)+u \mathbf{P}_{1}(v),(u, v) \in[0,1]^{2}
$$

Ruled surface

- properties:
- interpolates given boundary curves
- the boundaries in v-direction of ruled surface given by boundaries in u-direction are straight line segments
- the boundaries in u-direction of ruled surface given by boundaries in v-direction are straight line segments

Ruled surface

- derivation of ruled surface equation
- Example 3.1

Example 3.2

Surface of hyperbolic paraboloid

- interpolates 4 given points (= corners)
- bilinear interpolation - linear interpolation between 4 points
- vector equation of surface of HP given by corners $P_{0,0}, P_{0,1}, P_{1,0}$, $P_{1,1}$:

$$
\mathbf{P}(u, v)=(1-u)(1-v) \mathbf{P}_{0,0}+(1-u) v \mathbf{P}_{0,1}+u(1-v) \mathbf{P}_{1,0}+u v \mathbf{P}_{1,1},(u, v) \in[0,1]^{\mathbf{2}}
$$

Surface of hyperbolic paraboloid

- properties:
- interpolates given corners of the patch
- parametric curves in both directions (also boundaries) are straight line segments
- surface of HP is identical with ruled surface given by straight line segments as boundaries

Surface of hyperbolic paraboloid

- Example 3.4

Resulted surface

Tangent vectors of parametric curves

Twist vectors

