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Heat pumps - principles

▪ heat pumping

▪ basic cycles

▪ main components of HPs
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Heat pumps   HP

…  generally devices for:

HP

cooling

heat 

extraction

heating

heat 

rejection

t1

t2

t4

t3

A B

pumping the thermal energy from 

environment A 

at low  (= nonutilisable) temperature

transferring it to environment B

at higher (=utilisable) temperature
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Heat pumps – basic principles

▪ 2nd law of thermodynamics    

(increase of entropy in isolated systems,     

      irreversibility of heat processes):

▪ „thermal energy cannot be freely 

transferred from environment at lower 

temperature to environment at higher 

temperature “

▪ the process can be realised only if 

external energy at higher quality 

(potential, temperature) enters the 

system

( entropy …the rate of energy degradation)
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Heat pumps – basic principles

▪ high-potential energy

1. electric (electric engine)

2. mechanical (shaft, gearing)

3. heat at higher temperature 

than temperature, to which the 

heat is pumped (gas burner)

File:Rotterdam Ahoy Europort 2011 (14).JPG

//upload.wikimedia.org/wikipedia/commons/a/a9/Rotterdam_Ahoy_Europort_2011_%2814%29.JPG
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Heat pumps – basic principles

▪ heat pumping:

 driving high-potential energy (work) W degrades  

 and is transferred to environment B           

with the extracted (pumped) energy

HP

t1

t2

t4

t3

QA

extracted heat

(cooling)

QB = QA + W

rejected heat

(heating)

W (work)
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Devices

cooling machine

▪ uses primarily the cooling effect

▪ usable heat is extracted heat from environment A                         

(lowering the temperature)

»                  heat rejected to environment B 

   is not used (waste heat)
Clean Refrigerator Coils Step 2.jpg

A B

/Image:Clean-Refrigerator-Coils-Step-2.jpg
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Devices

▪ heat pump

▪ usable heat is the rejected heat to environment B

▪ difference is not in the principle, but in character of heat management

▪ both devices can’t be simply mixed – differences in practical construction

A B



8/46

Energy performance 

W

Q
COP B=

energy efficiency ratio

EER

coefficient of performance
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Carnot cycle

▪ theoretical cycle

▪ reversible (ideal)

▪ the most efficient thermal cycle

▪ can’t be realised in reality

▪ isoentropic changes (s = const.)

▪ Expansion, compression      I       I

▪ isothermal changes (T = const.)

 heat output                         ____

 heat input                           ____

Bq

Aq
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Carnot cycle
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Carnot cycle

▪ unrealistic cycle – not considering:

▪ finite surface area of heat exchangers

▪ thermophysical properties of working fluids (refrigerants)

▪ real efficiency of driving energy source

▪ heat losses

▪ auxilliary energy (pumps to overcome hydraulics losses)

▪ real coefficient of performance – comparison with Carnot

12
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−
=

comparative efficiency HP = 0,4  to  0,6

small HP 

capacity

large HP 

capacity
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Example

▪ environment A                 0 °C

▪ environment B 40 °C       60 °C

▪ calculate Carnot
12

2

TT

T
COP HPHP

−
=

Carnot COP  …         6,8    4,6

Real COP      …        2,7 – 4,1                1,8 – 2,7

small or/and unefficient HP big or/and efficient HP 
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vapour cycle (ideal)

Qk = Qv + Pie

COP = Qk / Pie
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▪ most widespread cycle

1) heat extraction at low temperature and low constant pressure with 

phase change (evaporation) of working fluid in evaporator

2) vapour suction and compression by a compressor

increase of pressure = increase of boiling point of the fluid

3) heat rejection at high temperature and high constant pressure with 

phase change (condensation) of working fluid in condenser

4) decrease of pressure (expansion) in expansion valve

decrease of pressure = decrease of the boiling point of the fluid
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Working fluid – refrigerant (diagram)

enthalpy
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Evaporation of water in the pot

1 liquid heating

                    2 evaporation

                                               3 superheating 

1 liquid

              2 damp vapour

                                   3 superheated

                                               vapour

I critical point

II saturated 

vapour curve

III saturated 

liquid curve

liquid

vapour
vapour

liquid
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Working fluid – refrigerant (diagram)

p [MPa]

h [J/kg]
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Rankin vapour cycle (ideal)

pv

pk
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23
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suction+compres in 

compressor,         

increasing boiling p.

2-3 h.rejection at 

high temp. in 

condenser

3-4 decr. pressure                 

in expansion 

valve decrease 

boiling point

4-1 h.extraction at 

low temp in 

evaporator
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Balance of Rankin vapour cycle
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(ideal) Rankin vapour cycle - example

saturated

vapour

350 kPa

-3 °C

damp

vapour

350 kPa

-10 °C

superheated

vapour

2.4 MPa

+70 °C

saturated

liquid

2.4 MPa

+42 °C
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Rankin vapour cycle

▪ ideal Rankin cycle assumes:

▪ no subcooling at condenser, no superheating at evaporator, refrigerant 

states at saturated curves

▪ no pressure losses (pipes, heat exchangers)

▪ no heat loss of heat pump

▪ isoentropic (ideal) compression

▪ Rankin cannot be realised, but differences from real cycle are quite 

small
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Real vapour cycle

▪ differences from Rankin cycle in:

▪ superheating of refrigerant at evaporator      1 – 1´ 

▪ polytropic compression  1´ - 2´

▪ subccoling of refrigerant liquid at condenser     

 3 – 3´
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Superheating at evaporator

▪ compressor sucks the superheated vapour   (1´)

▪ superheating has an advantage (contrary to cooling devices) – 

higher specific heat output

▪ superheated vapour at compressor intake = longer durability

▪ superheating due to:

▪ function of controlled expansion valve

▪ heat input from ambient = heat gains to pipe between evaporator and 

compressor

▪ heat input from electric motor in hermetic compressor
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Subcooling at condenser

▪ subcooling of liquid refrigerant under saturated state

▪ subcooling has benefits:

▪ proper function of expansion valve – subcooling provides liquid 

refrigerant input = stabilisation, elimination of cavitation effects, higher 

durability

▪ increase of effectiveness – increase of specific heat output without 

additional electric power demand
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Real compression

▪ compression of vapour is not isoentropic (without losses)

▪ polytropic compression: increase of energy demand by real 

processes in compressor

▪ isoentropic efficiency
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Real compression
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COP dependent on temperatures

▪ condensation temperature tk – given by the rejection system

▪ space heating systems

▪ hot water preparation 

▪ evaporation temperature tv – given by temperature of heat source 
(cooled environment)

▪ ground, air, water, waste heat
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COP dependent on temperatures
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COP dependent on temperatures
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COP dependent on

▪ type of refrigerant

▪ type of compressor

▪ sizing of heat exchangers
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Heat pump components

evaporator

condenser

compressor
expansion 

valve
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Compressor

▪ rotating spiral compressors (scroll)

▪ working cycle: suction-compression-discharge

▪ motion of rotor spiral on stator spiral

▪ continuos change of compression volume

▪ suction at perimeter, discharge in center

▪ durability, longlife, low vibration, low noise level
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Spiral compressor - function
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Spiral compressor - function

intake 
(suction)

intake (suction)

output (discharge)

compressed vapour 

in gradually smaller 

and smaller space
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Compressor construction

rotating spiral compressor
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Evaporator

▪ extracts the heat from low temperature heat source (cooled 
environment) by evaporation of refrigerant at low pressure at 
temperature lower than output temperature of cooled fluid

▪ cooling of heat transfer fluid :

▪ brine  (ground source)

▪ water  (water source)

▪ air  (air source)

▪ heat exchangers:

▪ liquids: plate heat exchanger

▪ air: pipe with fins heat exchanger
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Evaporator

tv1 - tv2

liquids   3-5 K

air    10 K

refrigerant partially 

evaporated

superheated

vapour
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Heat capacity Qv of evaporator
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Condenser

▪ rejects the heat into heat transfer fluid (heated environment) by 
condensation of refrigerant at high pressure and temperature higher 
than output temperature of heated fluid

▪ heating of heat transfer fluid:

▪ heating water (usual HP)

▪ DHW  (water heaters with HP)

▪ heat exchangers:

▪ plate HX

▪ pipe with fins (inside the tank)
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Condenser

tk1 - tk2 = 5-10 K

depends on 

heat capacity 

and flowrate

desuperheating subcooling

Countercurrent exchanger
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Heat capacity of condenser
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Expansion valve

▪ keep pressure difference between high-pressure and low-pressure 

side of the cycle

▪ controls the refrigerant flowrate from condenser to evaporator in 

dependence on output temperature from evaporator

▪ keep refrigerant superheating at evaporator output ts > 5 K

▪ refrigerant passing through EV is partially evaporated by expansion 

and the damp vapour (mixture of vapour and liquid droplets) enters into 

the evaporator
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Expansion valve

▪ expansion valve

▪ capillary – for constant operation conditions (refrigerator)

▪ termostatic expansion valve (TEV)

▪ electronic expansion valve (EEV)

 accurate control of superheating

4 K

7 K

S
u
p
e
rh

e
a
ti
n
g

Operation range 
( B5/W30  = brine 5°C, water 30°C )

EEV

TEV

Nominal point

B-5/W45 B0/W35 B5/W30 B10/W25
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Refrigerants

▪ azeotropic

▪ perform as pure liquids, vapour content is not changing at boiling point 

(phase change)

▪ R22, R290, azeotropic mixture: R502 or R507

▪ zeotropic

▪ mixtures usually from 2 to 4 refrigerants

▪ temperature glide – nonuniform evaporation of refrigerant 

components, difference in evaporation temperatures of components at 

constant pressure. Evaporation: temperature moderately increases. 

▪ e.g. R407a
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Refrigerants

 

azeotropic



46/46

Refrigerants

 

zeotropic (temperature glide)
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Refrigerants

▪ CFC

▪ fully halogenated hydrocarbons and mixtures, i.e. all atoms of H in 

molecule are replaced by halogenid atoms (Cl, F, Br)

▪ „hard freons“

▪ R11, R12, R13, R113, R114, R115, R502, R503 etc.

▪ HCFC

▪ chloro-fluorinated hydrocarbons, atoms of H in molecules

▪ „soft freons“

▪ R21, R22, R141b, R142b, R123, R124

forbiden

no servis

forbiden

no servis
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Refrigerants

▪ HFC

▪ no chlor atoms in molecule, only fluor

▪ R152a, R125, R407c, R134a, R410c, R32

▪ HFO (hydro-fluor-olefin) 

also composed of hydrogen, fluorine and carbon atoms, but 

contain at least one double bond between carbon atoms

▪ R1234yf

▪ HC  natural hydrocarbons and mixtures

▪ amonnia, propan (R290)

▪ no halogenids, flammable, toxic

▪ CO2 (R744)                          ???? (R718) 

longterm 

alternative

green 

refrigerants

preferred

expensive, 

gradually 

replaced
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