

Heat sources for heat pumps

- ground
- water
- air

Natural and waste energy

energy from solar radiation = ambient energy

- solar radiation: 200 to 1000 W/m^2

- air

- precipitation, surface water, well water
- ground
- **geothermal water** in specific areas only

waste energy

technology processes, laundry, washing, ventilation

Ground energy

specific power

heat flow from ambient 10 to 40 W/m² (in average) heat flow from Earth core 0,04 to 0,06 W/m² Only!

temperature

under 2-5 m stable conditions > 10 °C

geothermic temperature gradient 3 K/100 m

thermal conductivity

dry sand soil1,1 W/m.Kwet granite3,3 W/m.K

average 2 W/m.K

Ground temperature

Ground energy extraction

1. vertical bore heat exchangers

drilled dry ground boreholes

2. horizontal ground heat exchangers

subsurface HX

3. wells

extraction of ground water – different technology, different heat pump application

1 Ground vertical boreholes

- heat extraction by dry boreholes under 200 m
- usually under 100 m
- not space demanding (on ground surface)
- 1 or 2 pipe circuits in borehole
- primary circuit temperatures:

from -4 °C to +4 °C

design of length and number of boreholes

thermal properties of the ground

risk of undersizing – reveals after years,

decrease of heat output and COP, insufficient borehole regeneration

ecology

disruption of water horizons

interconnection of deep horizons with high quality ground water with shallow horizons with low quality water

1 Ground vertical - Thermal resistance of ground

field $D_{7} = 4 \text{ to } 6 \text{ m}$ diameter of borehole $d_{\rm v}$ = 100 to 150 mm DN25, DN32 HDPE thermal conductivity

 λ_{7} = 1,0 to 3,0 W/m.K

$$q_{z,l} = \frac{t_z - t_{v12}}{R_z}$$
 [W/m]

borehole temperature

 t_{v12} = around 0 °C (+4 to - 4°C)

ground temperature in stable field $t_z = 12 \text{ °C} (+3 \text{ K}/100 \text{ m})$

Ground type	specific heat flow q _{z,I} [W/m]
granite with water	100
conductive stone	80
standard solid stone, average	55
dry sands, low conductivity	30

1 Ground vertical - Specific heat flow EN 15 450 (VDI 4650)

Ground type	Specific heat extraction rate	
	operation period 1 800 h	operation period 2 400 h
General guidance values:		
poor underground (dry sediment and λ < 1,5 W/(m K)	25 W/m	20 W/m
normal underground and water-saturated sediment	60 W/m	50 W/m
1,5 < λ < 3,0 W/(m K)		
consolidated rock with high thermal conductivity	84 W/m	70 W/m
λ > 3,0 W/(m K)		
Individual ground types:		
dry gravel or sand	< 25 W/m	< 20 W/m
gravel or sand saturated with water	65 to 80 W/m	55 to 65 W/m
gravel or sand and strong ground water flow	80 to 100 W/m	80 to 100 W/m
moist clay	35 to 50 W/m	30 to 40 W/m
massive limestone	55 to 70 W/m	45 to 60 W/m
sandstone	65 to 80 W/m	55 to 65 W/m
siliceous magmatite (e.g.granite)	65 to 85 W/m	55 to 70 W/m
basic magmatite (e.g. basalt)	40 to 65 W/m	35 to 55 W/m
diorite	70 to 85 W/m	60 to 70 W/m
NOTE values valid for heat pump systems with a heating output up to 30 kW		

annual extracted energy should be between 100 and 150 kWh/m

for nominal conditions determine the heat power and COP

$$\dot{\mathbf{Q}}_{V} = \dot{\mathbf{Q}}_{k} \left(1 - \frac{1}{COP} \right)$$

- final borehole depth given by drilling technology similar technology to water wells, not more than 100 m
- more boreholes = division of flowrate = lower pressure losses

1 Alternative sizing

- determination of annual heat delivered by HP Q_{HP,del} and COP
- determination of annual extracted energy from borehole Q_v

$$Q_{v} = Q_{del} \left(1 - \frac{1}{COP} \right)$$

inverse value

• operation period $\Delta \tau_{HP}$: 1800 h (space heating only),

2400 h (space heating and DHW)

determination of average extraction power (at evaporator)

 $\dot{\mathbf{Q}}_{V} = \frac{\mathbf{Q}_{V}}{\Delta \tau_{HP}}$

design power for borehole depth calculation

1 Borehole construction

- suitable piping: HD-PE, PE-RC (crack resistant), PN16 (100m)
- minimum distance > 5 m horizontal gap to avoid the coupling of influenced fields
- better > 10 m: *drilling is not completely vertical* (deflection could be 2 m), so distance larger than 10 % of borehole length
- ground water flow: suitable location of boreholes to avoid mutual cooling
- borehole filling by bentonite (cement mixture)
 can't be filled by extracted soil ! = soil is insulator

14/59

1 Borehole construction

injection pipe – filling the borehole with bentonite

reduction - connection of circuits

distance bar – distance between pipes

support bar

U piece - bottom of borehole

anchor

- house, heat load 10 kW ($t_{e,N} = -12 \text{ °C}$, $t_i = 20 \text{ °C}$)
- heat pump Q_{HP} = 10 kW, COP = 4,0 (at B0/W35)
- heating season, monovalent operation

• $t_{e,av} = 4,3 \text{ °C}, t_{i,av} = 20 \text{ °C}, 225 \text{ days of heating, correction factor } 0,75$

• space heating demand $Q_{SH} = 19,9 \text{ MWh/a}$ $Q_{SH} = 225 \cdot 24 \cdot \varepsilon \cdot \dot{Q}_N \cdot \frac{(t_{i,avg} - t_{e,avg})}{(t_{i,N} - t_{e,N})}$

• hot water demand Q_{HW} = 3.5 MWh/a $Q_{HW} = 365 \cdot \frac{V_{HW,day} \cdot \rho \cdot c \cdot (t_{HW} - t_{CW})}{3.6 \times 10^6}$

- theoretical approach (power approach)
- cooling power of the heat pump $Q_v = Q_{HP} (1 1/COP) = 7.5 \text{ kW}$
- borehole

thermal conductivity
$$\lambda_z = 2,5$$
 W/mK, $d_v = 150$ mm, $D_z = 4$ m,
 $t_z = 12$ °C, $t_{v1} = +2$ °C, $t_{v2} = -2$ °C

- thermal resistence of ground $R_z = \frac{1}{2\pi \cdot \lambda_z} \ln \frac{D_z}{d_v} = 0,22 \text{ mK/W}$
- specific heat power $q_z = (t_z t_{v12}) / R_z = 54$ W/m
- borehole length (depth) $l_v = \frac{\dot{Q}_v}{q_z}$ [m] $l_v = 140$ m

- practical approach (demand approach): heating only 1800 h
- heat extracted by heat pump $Q_{ex} = Q_{SH} (1 1/COP) = 14,9 \text{ MWh}$
- average cooling power of heat pump $Q_v = Q_{ex} / 1800 h = 8.3 \text{ kW}$
- <u>tables</u>: average soil with $1,5 < \lambda_z < 3,0 \dots q_z = 60$ W/m (1800 h)
- borehole length (depth) $l_v = 138 \text{ m}$

- practical approach (demand approach): SH+HW 2400 h
- heat extracted $Q_{ex} = (Q_{SH} + Q_{HW})^*(1 1/COP) = 17,5 \text{ MWh}$
- average cooling power of heat pump $Q_v = Q_{ex} / 2400 h$ = 7.3 kW
- tables: average soil with $1,5 < \lambda_z < 3,0$ $q_z = 50$ W/m (2400 h)
- borehole length (depth)

 $l_{\rm v}$ = 146 m

2 Horizontal ground heat exchangers

- heat extraction from subsurface layer (up to 2 m depth)
- possible influence of vegetation
- space demanding excavation
- large land need
- HX temperatures around 0 °C

2 Horizontal ground heat exchangers

depth min. 0,2 m under non freezing level *h* = 0,6 to 2 m

pipe distance (spacing) *s* = min. 0,8 m to 1,1 m

HDPE pipes, diameter 25 – 40 mm

thermal conductivity $\lambda_z = 1,0$ to 3,0 W/m.K

$$R_{z} = \frac{1}{2\pi \cdot \lambda_{z}} \ln \left[\frac{2 \cdot s}{\pi \cdot d} \sinh \left(2\pi \frac{h}{s} \right) \right] \quad [m.K/W]$$

2 Horizontal ground heat exchangers

$$q_{z,l} = rac{t_z - t_{v12}}{R_z}$$
 [W/m]

temperature in pipes t_{v12} = around 0 °C (+4 to - 4°C)

temperature of ground *t*_z = 10 °C

Soil type	specific heat flow q _{z,I} [W/m]
dry sands, non cohesive	10 – 15
dry solid soil	15 – 20
moist solid soil	20 – 25
soil saturated with ground water	25 – 30
soil with ground water flow	35 – 40

2 Length and area of ground HX

$$I_{v} = \frac{Q_{v}}{q_{z}} = \frac{Q_{k} - P_{el}}{q_{z}} \quad [m]$$

$$S = \frac{Q_{v} \cdot s}{q_{z,l}} = \frac{Q_{v}}{q_{z,A}} \quad [m^{2}]$$
for a distance $s = 1 \text{ m}$

$$q_{z,l} \text{ becomes } q_{z,A}$$
Soil type
for a distance $s = 1 \text{ m}$

$$q_{z,l} \text{ becomes } q_{z,A}$$

$$\frac{\text{Soil type}}{10 - 15}$$
dry solid soil
for a distance $s = 1 \text{ m}$

$$q_{z,A} [W/m^{2}]$$
dry sands, non cohesive
for a distance $s = 1 \text{ m}$

$$q_{z,A} [W/m^{2}]$$

$$10 - 15$$

$$15 - 20$$

$$\frac{\text{moist solid soil}}{20 - 25}$$
soil saturated with ground water
flow
for a distance $s = 1 \text{ m}$

$$25 - 30$$
soil with ground water flow
for a distance $s = 1 \text{ m}$

$$35 - 40$$

2 Specific heat flow EN 15 450 (VDI 4650)

Ground quality	Specific heat extraction flow rate		
	operation period 1 800 h per year	operation period 2 400 h per year	
dry, non cohesive soil	10 W/m²	8 W/m²	
moist cohesive soil	20 to 30 W/m ²	16 to 24 W/m ²	
water saturated sand or gravel	40 W/m ²	32 W/m ²	

annual extracted energy should be between 50 and 70 kWh/m²

for nominal conditions determine heat power and COP (at B0/W35)

$$\dot{Q}_{v} = \dot{Q}_{k} \left(1 - \frac{1}{COP} \right)$$

 $q_{z,A}$ is considered according to assumed operation time of HP (1800, 2400 h)

2 Alternative sizing

- determination of annual heat delivered by HP Q_{HP,del} and COP
- determination of annual extracted energy from borehole Q_v

$$Q_v = Q_{del} \left(1 - \frac{1}{COP} \right)$$

• operation period $\Delta \tau_{HP}$: 1800 (space heating only),

2400 (space heating and DHW)

determination of average extraction power (at evaporator)

$$\dot{\mathbf{Q}}_{\mathbf{V}} = \frac{\mathbf{Q}_{\mathbf{V}}}{\Delta \tau_{HP}}$$

2 Construction of ground HX

- length of cirucits should not exceed 100 m for DN25 ... or 400 m for DN40 (pressure loss limitation)
- distribution of flowrate to number of circuits
- circuit from one pipe, no junctions
- surface above HX permeable for rain (no concrete of asphalt layers) for regeneration
- mind the roots!
- make documentation of piping location

2 Construction of ground HX

- brines ($t_{\rm F}$ < -10°C): propylenglycol-water (30 / 70 %) ethanol-water (40 / 60 %)
- pipe with slope from distributor deaeration
- similar lengths of circuits easy hydraulic balancing
- **passage** into building in insulated protector
- safety distance from building constructions (basements) pipes under freezing point
- attention for crossing the water installation
- piping inside building in insulation condensation and freezing

2 Borehole connection to house

2 Ground HX connection to house

2 Distributor

distributor located outside: platic casing concrete casing

3 Ground water

- chemical quality
- quantity
- stable water temperature = average annual air temperature

- warm waste water: cooling processes t = 20 to 25 °C
- surface water: rivers, lakes
 t = 0 to 18 °C, temperature infulenced by ambient climate
- ground water: wells, boreholes
 t = 7 to 10 °C, uniform temperature during the year
- geothermal water: deep boreholes
 t = 10 to 13 °C, temperature gradient 3 K/100 m
 t > 25 °C, geothermal water

3 Ground water

pumping well (max. 15 m deep: deeper well means greater pump power) drain well (15 m horizontally from pumping well) cooling by 3 to 4 K r Q_k = 10 kW ~ 1500 l/h (0,4 kg/s)

[kg/s]

 $\dot{M}_{v} = \frac{Q_{v}}{C(t - t)}$

water quantity (constant flowrate)

3 Pumping and drain well

3 Water quality

chemical content

- corrosion (stainless steel) chlorides, oxygen
- minerals (heat exchanger fouling)
- fine particles filters with automatic cleaning

Table A.1 — Requirements for the quality of extraction water as a heat source

components / units of measurement	value
organic material (possibility of sedimentation)	none
ph – value	6,5 to 9
electrical conductivity (µS/cm)	50 to 1 000
chloride (mg/litre)	< 300
iron and manganese (mg/litre)	< 1
sulfate (mg/litre)	0 to 150
O ₂ – content (mg/litre)	< 2
chlorine (mg/litre)	0 to 5
nitrate (mg/litre)	0 to 100

3 Example: water well sizing

- heat pump $Q_{HP} = 10 \text{ kW}, COP = 4,0$
- cooling power of the heat pump

$$Q_v = Q_{HP} (1 - 1/COP) = 7.5 \text{ kW}$$

•
$$t_{v1} = 10 \text{ °C}, \Delta t = 4 \text{ K}$$

• water flowrate Mw = 0,45 kg/s = 27 l/min

= 1 600 l/hour = 39 000 l/day

. . .

4 Ambient air

- use of ambient heat
- heat power dependent on climate conditions

winter: COP < 3

- summer: COP > 4
- mostly **bivalent** operation
- removal of condensate
- **noise** (large flowrates)

4 Ambient air

enthalpy

$$b = c_a \cdot t + (l_0 + c_D \cdot t) \cdot x = 1010 \cdot t + (2,5.10^6 + 1840 \cdot t) \cdot x$$

t air temperature, v °C;

 I_0 latent heat of water (evaporation), v J/kg;

$$c_D$$
 specific heat of water vapour, v J/(kg.K);

x specific humidity of air, v kg w/kg da.

$$\dot{V}_{v} = \frac{\dot{Q}_{v}}{\rho \cdot (h_{v1} - h_{v2})}$$

4 Construction

indoor units

outdoor units

4 Indoor units

4 Condensate

- condensation of water content in air at evaporator of heat pump
- removal of condensate
 - drainage to ground (outdoor units)
 - connection to sewer system (indoor units)
 - transfer pump

- frosting at evaporator surface
 - reduction of heat transfer
 - decrease of evaporator pressure and temperature, power, COP
 - reduction of cross section, increase of pressure loss, increase of fan power, operation restriction

defrosting

- internal cycle (favourable): hot vapor, reverse cycle
- outter heating: electric cables at evaporator

by air above +3 °C, HP is OFF, fan is ON

4 Noise protection

- large flowrates at evaporator, big fan source of noise
 - grass not refection surfaces
 - noise barriers (walls, green fences)
 - protection by distance
 - antivibrating layers under HP
 - noise reducers for piping (water, air)

