Booleova algebra
Základní operace
Logický součin (AND):
A | B | A ⋅ B
---|---|-------
0 | 0 | 0
0 | 1 | 0
1 | 0 | 0
1 | 1 | 1
Logický součet (OR):
A | B | A + B
---|---|-------
0 | 0 | 0
0 | 1 | 1
1 | 0 | 1
1 | 1 | 1
Negace (NOT):
A | ¬A
---|----
0 | 1
1 | 0
Axiomy Booleovy algebry
Booleova algebra se řídí několika základními axiomy:
- Komutativita:
- A ⋅ B = B ⋅ A
- A + B = B + A
- Asociativita:
- (A ⋅ B) ⋅ C = A ⋅ (B ⋅ C)
- (A + B) + C = A + (B + C)
- Distributivita:
- A ⋅ (B + C) = (A ⋅ B) + (A ⋅ C)
- A + (B ⋅ C) = (A + B) ⋅ (A + C)
- Existence neutrálních prvků (identita):
- A ⋅ 1 = A
- A + 0 = A
- Existence inverzních prvků (doplněk):
- A ⋅ ¬A = 0
- A + ¬A = 1
Teorémy Booleovy algebry
Některá odvozená pravidla:
- Idempotence:
- A + A = A
- A ⋅ A = A
- Dominance (nulový prvek):
- A + 1 = 1
- A ⋅ 0 = 0
- Dvojitá negace:
- ¬(¬A) = A
- De Morganovy zákony:
- ¬(A + B) = ¬A ⋅ ¬B
- ¬(A ⋅ B) = ¬A + ¬B
- Absorpční zákony:
- A + (A ⋅ B) = A
- A ⋅ (A + B) = A
- Absorpce negace:
- A + (A' ⋅ B) = A + B
- A ⋅ (A' + B) = A ⋅ B