Booleova algebra
Základní operace
Logický součin (AND):
 A | B | A ⋅ B
---|---|-------
 0 | 0 |   0
 0 | 1 |   0
 1 | 0 |   0
 1 | 1 |   1
Logický součet (OR):
 A | B | A + B 
---|---|-------
 0 | 0 |   0
 0 | 1 |   1
 1 | 0 |   1
 1 | 1 |   1Negace (NOT):
 A | ¬A
---|----
 0 |  1
 1 |  0
Axiomy Booleovy algebry
Booleova algebra se řídí několika základními axiomy:
- Komutativita:- A ⋅ B = B ⋅ A
- A + B = B + A
 
- Asociativita:- (A ⋅ B) ⋅ C = A ⋅ (B ⋅ C)
- (A + B) + C = A + (B + C)
 
- Distributivita:- A ⋅ (B + C) = (A ⋅ B) + (A ⋅ C)
- A + (B ⋅ C) = (A + B) ⋅ (A + C)
 
- Existence neutrálních prvků (identita):- A ⋅ 1 = A
- A + 0 = A
 
- Existence inverzních prvků (doplněk):- A ⋅ ¬A = 0
- A + ¬A = 1
 
Teorémy Booleovy algebry
Některá odvozená pravidla:
- Idempotence:- A + A = A
- A ⋅ A = A
 
- Dominance (nulový prvek):- A + 1 = 1
- A ⋅ 0 = 0
 
- Dvojitá negace:- ¬(¬A) = A
 
- De Morganovy zákony:- ¬(A + B) = ¬A ⋅ ¬B
- ¬(A ⋅ B) = ¬A + ¬B
 
- Absorpční zákony:- A + (A ⋅ B) = A
- A ⋅ (A + B) = A
 
- Absorpce negace:- A + (A' ⋅ B) = A + B
- A ⋅ (A' + B) = A ⋅ B